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Despite the success of neural networks at solving concrete physics problems, their use as a general-
purpose tool for scientific discovery is still in its infancy. Here, we approach this problem by
modelling a neural network architecture after the human physical reasoning process, which has
similarities to representation learning. This allows us to make progress towards the long-term goal
of machine-assisted scientific discovery from experimental data without making prior assumptions
about the system. We apply this method to toy examples and show that the network finds the
physically relevant parameters, exploits conservation laws to make predictions, and can help to gain
conceptual insights, e.g. Copernicus’ conclusion that the solar system is heliocentric.

Theoretical physics, like all fields of human activity,
is influenced by the schools of thought prevalent at the
time of development. As such, the physical theories we
know may not necessarily be the simplest ones to explain
experimental data, but rather the ones that most natu-
rally followed from a previous theory at the time. Both
general relativity and quantum theory were built upon
classical mechanics — they have been impressively suc-
cessful in the restricted regimes of the very large and very
small, respectively, but are fundamentally incompatible,
as reflected by paradoxes such as the black hole infor-
mation loss [1, 2]. This raises an interesting question:
are the laws of quantum physics, and other physical the-
ories more generally, the most natural ones to explain
data from experiments if we assume no prior knowledge
of physics? While this question will likely not be an-
swered in the near future, recent advances in artificial
intelligence allow us to make a first step in this direc-
tion. Here, we investigate whether neural networks can
be used to discover physical concepts from experimental
data.

Previous work. The goal of using machines to help
with discovering the physical laws underlying experimen-
tal data has been pursued in several contexts (see Ap-
pendix B for a more detailed overview and [3–6] for re-
cent reviews). A lot of early work focused on finding
mathematical expressions describing a given dataset (see
e.g. [7–9]). For example, in [8] an algorithm recovers
the laws of motion of simple mechanical systems, like a
double pendulum, by searching over a space of mathe-
matical expressions on given input variables. More re-
cently, significant progress was made in extracting dy-
namical equations from experimental data [10–18]. These
methods are highly practical and they were successfully
applied to complex physical systems, but require prior
knowledge on the systems of interest, for example in the
form of knowing what the relevant variables are or that
dynamics should be described by differential equations.
In certain situations one might not have such prior knowl-
edge or does not want to impose it to allow the machine
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to find entirely different representations of the physical
system.

Over the last few years, neural networks have become
the dominant method in machine learning and they have
successfully been used to tackle complex problems in clas-
sical as well as quantum physics (see Appendix B for fur-
ther discussions). Conversely, neural networks may also
lead to new insights into how the human brain devel-
ops physical intuition from observations [19–25]. Very
recently, physical variables were extracted in an unsu-
pervised way from time series data of dynamical systems
in [26].

Our goal in this work is to minimize the extent to
which prior assumptions about physical systems impose
structure on the machine learning system. Eliminating
assumptions that may not be satisfied for all physical
systems, such as assuming that particles only interact in
a pairwise manner, is necessary for the long-term goal
of an artificial intelligence physicist (see [27] for recent
progress in this direction) that can be applied to any
system without a need for adaptions and might eventu-
ally contribute to progress in the foundations of physics.
Very recently, neural networks were used in this spirit
to detect differences between observed data and a refer-
ence model [28, 29]. However, there is a tradeoff between
generality and performance, and the performance of the
machine learning system proposed here — based on au-
toencoders [30–32] — is not yet comparable to more es-
tablished approaches that are adapted to specific physical
systems.

Modelling the physical reasoning process. This
work makes progress towards an interpretable artificial
intelligence agent that is unbiased by prior knowledge
about physics by proposing to focus on the human phys-
ical modelling process itself, rather than on specific physi-
cal systems. We formalize a simplified physical modelling
process, which we then translate into a neural network
architecture. This neural network architecture can be ap-
plied to a wide variety of physical systems, both classical
and quantum, and is flexible enough to accommodate
different additional desiderata on representations of the
system that we may wish to impose.

We start by considering a simplified version of the
physical modelling process, pictured in Figure 1a. Physi-
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a) b)

Figure 1. Learning physical representations. (a) Human learning. A physicist compresses experimental observations
into a simple representation (encoding). When later asked any question about the physical setting, the physicist should be able
to produce a correct answer using only the representation and not the original data. We call the process of producing the answer
from the representation decoding. For example, the observations may be the first few seconds of the trajectory of a particle
moving with constant speed; the representation could be the parameters “speed v” and “initial position x0” and the question
could be “where will the particle be at a later time t′?” (b) Neural network structure for SciNet. Observations are
encoded as real parameters fed to an encoder (a feed-forward neural network, see Appendix D), which compresses the data into
a representation (latent representation). The question is also encoded in a number of real parameters, which, together with the
representation, are fed to the decoder network to produce an answer. (The number of neurons depicted is not representative.)

cists’ interactions with the physical world take the
form of experimental observations (e.g. a time series
(ti, x(ti))i∈{1,...,N} describing the motion of a particle at
constant speed). The models physicists build do not deal
with these observations directly, but rather with a rep-
resentation of the underlying physical state of the ob-
served system (e.g. the two parameters initial position
and speed, (x0, v)). Which parameters are used is an im-
portant part of the model, and we will give suggestions
about what makes a good representation below. Finally,
the model specifies how to make predictions (i.e., answer
questions) based on the knowledge of the physical state
of the system (e.g. “where is the particle at time t′?”).
More formally, this physical modelling process can be re-
garded as an “encoder” E : O → R mapping the set
of possible observations O to representations R, followed
by a “decoder” D : R×Q → A mapping the sets of all
possible representations R and questions Q to answers
A.

Network structure. This modelling process can be
translated directly into a neural network architecture,
which we refer to as SciNet in the following (Figure 1b).
The encoder and decoder are both implemented as feed-
forward neural networks. The resulting architecture, ex-
cept for the question input, resembles an autoencoder
in representation learning [30, 31], and more specifically
the architecture in [33]. During the training, we provide
triples of the form (o, q, acorr(o, q)) to the network, where
acorr(o, q) ∈ A is the correct reply to question q ∈ Q
given the observation o ∈ O. The learned parameteriza-
tion is typically called latent representation [30, 31]. To
feed the questions into the neural network, they are en-
coded into a sequence of real parameters. Thereby, the
actual representation of a single question is irrelevant as
long as it allows the network to distinguish questions that
require different answers.

It is crucial that the encoder is completely free to

choose a latent representation itself, instead of us im-
posing a specific one. Because neural networks with at
least one hidden layer composed of sufficiently many neu-
rons can approximate any continuous function arbitrarily
well [34], the fact that the functions E and D are imple-
mented as neural networks does not significantly restrict
their generality. However, unlike in an autoencoder, the
latent representation need not describe the observations
completely; instead, it only needs to contain the infor-
mation necessary to answer the questions posed.

This architecture allows us to extract knowledge from
the neural network: all of the useful information is stored
in the representation, and the size of this representation
is small compared to the total number of degrees of free-
dom of the network. This allows us to interpret the learnt
representation. Specifically, we can compare SciNet’s la-
tent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do
not even have any hypotheses about the system at hand,
we may still gain some insights solely from the number
of required parameters or from studying the change in
the representation when manually changing the input,
and the change in output when manually changing the
representation (as in e.g. [32]).

Desired properties for a representation. For
SciNet to produce physically useful representations, we
need to formalize what makes a good parameterization
of a physical system, i.e., a good latent representation.
We stress that this is not a property of a physical system,
but a choice we have to make. We will give two possible
choices below.

Generally, the latent representation should only store
the minimal amount of information that is sufficient to
correctly answer all questions in Q. For minimal suf-
ficient uncorrelated representations, we additionally re-
quire that the latent neurons be statistically independent
from each other for an input sampled at random from
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b) Two qubits

Figure 2. Quantum tomography. SciNet is given tomo-
graphic data for one or two qubits, as shown in part a) and
b) of the figure, respectively, and an operational description
of a measurement as a question input and has to predict the
probabilities of outcomes for this measurement. The plots
show the root mean square error of SciNet’s measurement
predictions for test data as a function of the number of la-
tent neurons. In the tomographically complete case, SciNet
recovers the number of (real) degrees of freedom required to
describe a one and a two qubit state (which are two and six,
respectively). Tomographically incomplete data can be recog-
nized, since the prediction error remains high as one increases
the number of latent neurons.

the training data, reflecting the idea that physically rel-
evant parameters describe aspects of a system that can
be varied independently and are therefore uncorrelated
in the experimental data. Under this independence as-
sumption, the network is then motivated to choose a rep-
resentation that stores different physical parameters in
different latent neurons. We formalize these demands in
Appendix C and show, using techniques from differential
geometry, that the number of latent neurons equals the
number of underlying degrees of freedom in the training
data that are needed to answer all questionsQ. To imple-
ment these requirements in a neural network, we use well-
established methods from representation learning, specif-
ically disentangling variational autoencoders [32, 35] (see
Appendix D 1 for details).

Alternatively, for situations where the physically rele-
vant parameters can change, either over time or by some
time-independent update rule, we might prefer a repre-
sentation with a simple such update rule. We explain
below how this requirement can be enforced.

Results. To demonstrate that SciNet helps to re-
cover relevant concepts in physics by providing the rele-
vant physical variables, both in quantum- and classical-
mechanical settings, we consider four toy examples from
different areas of physics. In summary, we find: (i) given
a time series of the positions of a damped pendulum,
SciNet can predict future positions with high accuracy
and it uses the relevant parameters, namely frequency
and damping factor, separately in two of the latent neu-
rons (and sets the activation of unnecessary latent neu-
rons to zero); (ii) SciNet finds and exploits conserva-
tion laws: it uses the total angular momentum to predict
the motion of two colliding particles; (iii) given measure-
ment data from a simple quantum experiment, SciNet

can be used to determine the dimension of the under-
lying unknown quantum system and to decide whether
a set of measurements is tomographically complete, i.e.,
whether it provides full information about the quantum
state; (iv) given a time series of the positions of the Sun
and Mars as observed from Earth, SciNet switches to a
heliocentric representation — that is, it encodes the data
into the angles of the two planets as seen from the Sun.
The results show that SciNet finds, without having been
given any prior information about the specific physical
systems, the same quantities that we use in physics text-
books to describe the different settings. We also show
that our results are robust against noise in the exper-
imental data. To illustrate our approach, we will now
describe two of these settings in some depth. For de-
tailed descriptions of the four different settings, the data
generation, interpretation and additional background in-
formation, we refer to Appendix E.

In all our examples, the training data we use is op-
erational and could be generated from experiments, i.e.,
the correct answer is the one observed experimentally.
Here, we use simulations instead because we only deal
with classical and quantum mechanics, theories whose
predictions are experimentally well tested in the rele-
vant regimes. One might think that using simulated data
would restrict SciNet to rediscovering the theory used for
data generation. However, in particular for quantum me-
chanics, we are interested in finding conceptually differ-
ent formulations of the theory with the same predictions.

Quantum state tomography. In quantum mechan-
ics, it is not trivial to construct a simple representation of
the state of a quantum system from measurement data,
a task called quantum tomography [36]. In the follow-
ing, we will show that SciNet finds representations of
arbitrary (pure) one- and two-qubit states. To ensure
that no prior knowledge about quantum physics is re-
quired to collect the measurement data, we assume an
operational setting in which we have access to two de-
vices in a lab, where one device can create (many copies
of) a quantum system in a certain state depending on
the chosen parameters of the device. The other device
performs binary measurements on the quantum system.
The input to SciNet consists of the outcome probabili-
ties of a random fixed set of “reference measurements”
on quantum systems in the unknown quantum state ψ.
As a question input, we provide a parameterization of a
measurement ω (one may think of the setting of the dials
and buttons of the measurement device). SciNet has to
predict the outcome probability of the measurement ω on
a quantum system in the state ψ. We train SciNet with
different pairs (ω, ψ) for one and two qubits. The results
are shown in Figure 2. Training different networks with
different numbers of latent neurons, we can observe how
the quality of the predictions (after training has been
completed) improves as we allow for more parameters in
the representation of ψ. This allows us to gain relevant
information, without previous hypotheses about the na-
ture of this representation (for example, whether it is a
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Figure 3. Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at
an initial time t0 and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent
variables. Observations are encoded into a simple representation r(t0) at time t0. Then, the representation is evolved in time
to r(t1) and a decoder is used to predict a(t1), and so on. In each (equally spaced) time step, the same time evolution network
and decoder network are applied. (b) Physical setting. The heliocentric angles φE and φM of the Earth and Mars are
observed from the Sun; the angles θS and θM of the Sun and Mars are observed from Earth. All angles are measured relative
to the fixed star background. (c) Representation learned by SciNet. The activations r1,2(t0) of the two latent neurons at
time t0 (see Figure 3a) are plotted as a function of the heliocentric angles φE and φM . The plots show that the network stores
and evolves parameters that are linear combinations of the heliocentric angles.

vector in a Hilbert space).

If the reference measurements are tomographically
complete, meaning that they are sufficient to reconstruct
a complete representation of the underlying quantum sys-
tem, the plots in Figure 2 show a drop in prediction er-
ror when the number of latent neurons is increased up
to two and six for the cases of one and two qubits, re-
spectively [37]. This is in accordance with the number
of degrees of freedom required to describe a one- or a
two-qubit state in our current theory of quantum me-
chanics. For the case where the set of measurements is
tomographically incomplete, it is not possible for SciNet
to predict the outcome of the final measurement perfectly
regardless of the number of latent neurons. This means
that purely from operational data, we can make a state-
ment about the tomographic completeness of measure-
ments and about the number of degrees of freedom of
the underlying unknown quantum system.

Enforcing a simple time evolution. As mentioned
above, if the physically relevant parameters can change,
we can enforce a representation that has a simple up-
date rule. For illustration, we will consider time evolu-
tion here, but more general update rules are possible. To
accomodate changing physical parameters, we need to
extend the latent representation as shown in Figure 3a.
Instead of a single latent represetation with a decoder
attached to it, we now have many latent representations
that are generated from the intial representation by a
time evolution network. Each representation has a de-
coder attached to it to produce an answer to a question.
Because we only want the parameters, but not the phys-
ical model, to change in time, all time evolution steps
and decoders are identical, i.e., they implement the same
function. The encoder, time evolution network, and de-
coder are trained simultaneously. To enforce parameters
with a simple time evolution, we restrict the time evolu-
tion network to implementing very simple functions, such
as addition of a constant [38].

Heliocentric solar system. In the 16th century,
Copernicus used observations of the positions of differ-
ent planets on the night sky (Figure 3b) to hypothesize
that the Sun, and not the Earth, is at the centre of our so-
lar system. This heliocentric view was confirmed by Ke-
pler at the start of the 17th century based on astronomic
data collected by Brahe, showing that the planets move
around the Sun in simple orbits. Here, we show that
SciNet similarly uses heliocentric angles when forced to
find a representation for which the time evolution of the
variables takes a very simple form, a typical requirement
for time-dependent variables in physics.

The observations given to SciNet are angles θM (t0) of
Mars and θS(t0) of the Sun as seen from Earth at a start-
ing time t0 (which is varied during training). The time
evolution network is restricted to addition of a constant
(the value of which is learned during training). At each
time step i, SciNet is asked to predict the angles as seen
from Earth at the time ti using only its representation
r(ti). Because this question is constant, we do not need
to feed it to the decoder explicitly.

We train SciNet with randomly chosen subsequences of
weekly (simulated) observations of the angles θM and θS
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars
and Earth around the Sun. Figure 3c shows the learned
representation and confirms that SciNet indeed stores
a linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.

Conclusion. In this work, we have shown that SciNet
can be used to recover physical variables from experi-
mental data in various physical toy settings. The learnt
representations turned out to be the ones commonly used
in physics textbooks, under the assumption of uncorre-
lated sampling. In future work we plan to extend our ap-
proach to data where the natural underlying parameters
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are correlated in the training distribution. The separa-
tion of these parameters in the representation found by
SciNet requires the development of further operational
criteria for disentangling latent variables. In more com-
plex scenarios, the methods introduced here may lead
to entirely novel representations, and extracting human
physical insight from such representations remains chal-
lenging. This could be addressed using methods from
symbolic regression [39] to obtain analytical expressions
for the encoder and decoder maps, or for a map between
a hypothesized and the actual representation. Alterna-
tively, methods such as the ones presented in [40, 41]
could help to improve the interpretability of the repre-
sentation. Following this direction, it might eventually
become possible for neural networks to produce insights
expressed in our mathematical language.
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The source code and the training data are avail-
able at: https://github.com/eth-nn-physics/
nn physical concepts. See also Appendix A for the
implementation details. SciNet worked well on all tested
examples, i.e., we did not post-select examples based on
whether SciNet worked or not.

Appendix A: Implementation

The neural networks used in this work are specified
by the input size for question and observation input, the
output size, the number of latent neurons, and the sizes
of encoder and decoder. The number of neurons in the
encoder and decoder are not expected to be important for
the results, provided the encoder and decoder are large
enough to not constrain the expressivity of the network
(and small enough to be efficiently trainable). The train-
ing is specified by the number of training examples, the
batch size, the number of epochs, the learning rate and
the value of the parameter β (see section D 1). To test
the networks, we use a number of previously unseen test
samples. We give the values of these parameters for the

examples presented in the main text (and described in
detail in Section E) in Table I and Table II.

The source code, all details about the network struc-
ture and training process, and pre-trained SciNets are
available at

https://github.com/eth-nn-physics/
nn physical concepts.

The networks were implemented using the Tensorflow li-
brary [42]. For all examples, the training process only
takes a few hours on a standard laptop.

Appendix B: Detailed comparison with previous
work

Neural networks have become a standard tool to tackle
problems where we want to make predictions without fol-
lowing a particular algorithm or imposing structure on
the available data (see for example [44–46]) and they have
been applied to a wide variety of problems in physics. For
example, in condensed matter physics and generally in
many-body settings, neural networks have proven partic-
ularly useful to characterize phase transitions (see [3] and
references therein) and to learn local symmetries [47].

In quantum optics, automated search techniques and
reinforcement-learning based schemes have been used to
generate new experimental setups [48, 49]. Projective
simulation [50] is used in [49] to autonomously discover
experimental building blocks with maximum versatility.

Closer to our work, neural networks have also been
used to efficiently represent wave functions of particular
quantum systems [51–65]. In particular, in [52], varia-
tional autoencoders are used to approximate the distri-
bution of the measurement outcomes of a specific quan-
tum state for a fixed measurement basis and the size of
the neural network can provide an estimate for the com-
plexity of the state. In contrast, our approach does not
focus on an efficient representation of a given quantum
state and it is not specifically designed for learning repre-
sentations of quantum systems. Nevertheless, SciNet can
be used to produce representations of arbitrary states of
simple quantum systems without retraining. This allows
us to extract information about the degrees of freedom
required to represent any state of a (small) quantum sys-
tem.

Another step towards extracting physical knowledge
in an unsupervised way is presented in [66]. The authors
show how the relevant degrees of freedom of a system
in classical statistical mechanics can be extracted under
the assumption that the input is drawn from a Boltz-
mann distribution. They make use of information theory
to guide the unsupervised training of restricted Boltz-
mann machines, a class of probabilistic neural networks,
to approximate probability distributions.

A different line of work has focused on using neural
networks and other algorithmic techniques to better un-

https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/eth-nn-physics/nn_physical_concepts
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Example
Observation
input size

Question
input size

# Latent
neurons

Output
size

Encoder Decoder

Pendulum 50 1 3 1 [500, 100] [100, 100]

Collision 30 16 1 2 [150, 100] [100, 150]

One qubit 10 10 0-5 1 [100, 100] [100, 100]

Two qubits 30 30 0-9 1 [300, 100] [100, 100]

Solar system 2 0 2 2 [100, 100] [100, 100]

Table I. Parameters specifying the network structure. The first four examples use the network structure depicted in Figure 1,
whereas the last example uses the structure shown in Figure 3a. The notation [n1, n2] is used to describe the number of neurons
n1 and n2 in the first and the second hidden layer of the encoder (or the decoder), respectively.

Example Batch size Learning rate β # Epochs
# Training

samples
# Test
samples

Pendulum 512 10−3 10−3 1000 95000 5000

Collision 500 (5 · 10−4, 10−4) 0 (100, 50) 490000 10000

One qubit 512 (10−3, 10−4) 10−4 (250, 50) 95000 5000

Two qubits 512 (10−3, 10−4) 10−4 (250, 50) 490000 10000

Solar system 256− 2048 10−5 − 10−4 0.001− 0.1 15000 95000 5000

Table II. Parameters specifying the training process. For training with two phases, the notation (p1, p2) refers to the parameters
in the first and second phase, respectively. The last example uses five training phases specified in detail in [43].

derstand how humans are able to gain an intuitive un-
derstanding of physics [19–25, 67–69].

Very recently, physical variables were extracted in an
unsupervised way from time series data of dynamical sys-
tems [26]. The network structure used in [26] is built on
interaction networks [70–72] and it is well adapted to
physical systems consisting of several objects interacting
in a pair-wise manner. The prior knowledge included in
the network structure allows the network to generalise to
situations that differ substantially from those seen during
training.

In the last few years, significant progress was made
in extracting dynamical equations from experimental
data [10–18], which is known to be an NP-hard prob-
lem [73]. Where the most of these works search for dy-
namical models in the input data, in [12–14] neural net-
works are used to find a new set of variables such that
the evolution of the new variables is approximately linear
(motivated by Koopman operator theory). Our example
given in Section E 4 uses a similar network structure as
the one used in [12–14], which corresponds to a special
case of SciNet with a trivial question input and a latent
representation that is evolved in time. The concept of
evolving the system in the latent representation has also
been used in machine learning to extract the relevant
features from video data [74]. A further step towards an
artificial intelligence physicist was taken in [27], where
data from complex environments is automatically sepa-
rated into parts corresponding to systems that can be
explained by simple physical laws. The machine learn-
ing system then tries to unify the underlying “theories”
found for the different parts of the data.

Appendix C: Minimal representations

Here, we describe some of the theoretical considera-
tions that went into designing SciNet and helping it to
find useful representations that encode physical princi-
ples. Given a data set, it is generally a complex task to
find a simple representation of the data that contains all
the desired information. SciNet should recover such rep-
resentations by itself; however, we encourage it to learn
“simple” representations during training. To do so, we
have to specify the desired properties of a representation.
In this, our approach follows the spirit of several works
on representation learning theory [30–32, 35, 75, 76].

For the theoretical analysis, we introduce some addi-
tional structure on the data that is required to formulate
the desired properties of a representation. We consider
real-valued data, which we think of as being sampled
from some unknown probability distribution. In other
words, we assign random variables to the observations
O, the questions Q, the latent representation R, and the
answers A. We use the convention that a random variable
X = (X1, . . . , X|X|) takes samples in X ⊂ R|X|, where
|X| denotes the dimension of the ambient space of X. In
particular, |R| will correspond to the number of neurons
in the latent representation.

We require the following properties for an uncorre-
lated (sufficient) representation R (defined by an en-
coder mapping E : O → R) for the data described by
the triple (O,Q, acorr), where we recall that the function
acorr : O × Q → A sends an observation o ∈ O and a
question q ∈ Q to the correct answer a ∈ A.
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1. Sufficient (with smooth decoder): There ex-
ists a smooth map D : R × Q 7→ A, such that
D(E(o), q) = acorr(o, q) for all possible observations
o ∈ O and questions q ∈ Q .

2. Uncorrelated: The elements in the set
{R1, R2, . . . , R|R|} are mutually independent.

Property 1 asserts that the encoder map E encodes all
information of the observation o ∈ O that is necessary
to reply to all possible questions q ∈ Q. We require the
decoder to be smooth, since this allows us to give the
number of parameters stored in the latent representation
a well defined meaning in terms of a dimension (see Sec-
tion C 1).

Property 2 means that knowing some variables in the
latent representation does not provide any information
about any other latent variables; note that this depends
on the distribution of the observations.

We define a minimal uncorrelated representation R as
an uncorrelated (sufficient) representation with a mini-
mal number of parameters |R|. This formalizes what we
consider to be a “simple” representation of physical data.

Without the assumption that the decoder is smooth, it
would, in principle, always be sufficient to have a single
latent variable, since a real number can store an infinite
amount of information. Hence, methods from standard
information theory, like the information bottleneck [77–
79], are not the right tool to give the number of vari-
ables a formal meaning. In Section C 1, we use methods
from differential geometry to show that the number of
variables |R| in a minimal (sufficient) representation cor-
responds to the number of relevant degrees of freedom
in the observation data required to answer all possible
questions.

1. Interpretation of the number of latent variables

Above, we have required that the latent representa-
tion should contain a minimal amount of latent variables;
we now relate this number to the structure of the given
data. Proposition 2 below asserts that the minimal num-
ber of latent neurons corresponds to the relevant degrees
of freedom in the observed data required to answer all
the questions that may be asked.

For simplicity, we describe the data with sets instead of
random variables here. Note that the probabilistic struc-
ture was only used for Property 2 in Section C, whereas
here, we are only interested in the number of latent neu-
rons and not in that they are mutually independent. We
therefore consider the triple (O,Q, acorr), where O and
Q are the sets containing the observation data and the
questions respectively, and the function acorr : (o, q) 7→ a
sends an observation o ∈ O and a question q ∈ Q to the
correct reply a ∈ A.

Intuitively, we say that the triple (O,Q, acorr) has di-
mension at least n if there exist questions in Q that are
able to capture n degrees of freedom from the observa-
tion data O. Smoothness of this “oracle” is a natural
requirement, in the sense that we expect the dependence
of the answers on the input to be robust under small
perturbations. The formal definition follows.

Definition 1 (Dimension of a data set). Consider a data
set described by the triple (O,Q, acorr), where acorr : O×
Q → A, and all sets are real, O ⊆ Rr,Q ⊆ Rs,A ⊆
Rt. We say that this triple has dimension at least n if
there exists an n-dimensional submanifold On ⊆ O and
questions q1, . . . , qk ∈ Q and a function

f : On → Ak :=

k︷ ︸︸ ︷
A×A× · · · ×A

o 7→ [acorr(o, q1), . . . , acorr(o, qk)]

such that f : On → f(On) is a diffeomorphism.

Proposition 2 (Minimal representation for SciNet). A
(sufficient) latent representation for data described by a
triple (O ⊂ Rr,Q ⊂ Rs, acorr : O × Q → A ⊂ Rt) of
dimension at least n requires at least n latent variables.

Proof. By assumption, there is an n-dimensional sub-
manifold On ⊂ O and k questions q1, . . . , qk such that
f : On → In := f(On) is a diffeomorphism. We prove
the statement by contradiction: assume that there ex-
ists a (sufficient) representation described by an encoder
E : O → Rm ⊂ Rm with m < n latent variables. By suf-
ficiency of the representation, there exists a smooth de-
coder D : Rm×Q → A such that D(E(o), q) = acorr(o, q)
for all observations o ∈ O and questions q ∈ Q. We define
the smooth map

D̃ : Rm → Ak

r 7→ [D(r, q1), . . . , D(r, qk)],

and denote the pre-image of In by R̃m := D̃−1(In).

By sufficiency of the representation, the restriction of
the map D̃ to R̃m denoted by D̃|R̃m : R̃m → In is a
smooth and surjective map. However, by Sard’s theorem
(see for example [80]), the image D̃(R̃m) is of measure

zero in In, since the dimension of the domain R̃m ⊂ Rm
is at most m, which is smaller than the dimension n of
the image In. This contradicts the surjectivity of D̃|R̃m
and finishes the proof.

We can consider an autoencoder as a special case of
SciNet , where we ask always the same question and ex-
pect the network to reproduce the observation input.
Hence, an autoencoder can be described by a triple
(O,Q = {0}, acorr : (o, 0) 7→ o). As a corollary of Propo-
sition 2, we show that in the case of an autoencoder, the
required number of latent variables corresponds to the
“relevant” number of degrees of freedom that describe
the observation input. The relevant degrees of freedom,
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Figure 4. Neural networks. (a) Single artificial neuron with weights wi, bias b and ELU activation function σELU. The
inputs to the neuron are denoted by x1, . . . , x4. (b) ELU activation function for α = 1. (c) Fully connected (feed-forward)
neural network with 3 layers. The network as a whole can be thought of as a function mapping the inputs (x1, . . . , xn) to the
output (y1, . . . , ym).

which are called (hidden) generative factors in this con-
text in representation learning (see for example [32]),
may be described by the dimension of the domain of a
smooth nondegenerate data generating function H, de-
fined as follows.

Definition 3. We say that a smooth function H : G ⊂
Rd → Rr is nondegenerate if there exists an open subset
Nd ⊂ G such that the restriction H|Nd : Nd → H(Nd) of
H on Nd is a diffeomorphism.

One may think of H as sending a small dimensional
representation of the data onto a manifold in a high di-
mensional space of observations.

Corollary 4 (Minimal representation for an autoen-
coder). Let H : G ⊂ Rd → O ⊂ Rr be a smooth,
nondegenerate and surjective (data generating) function,
and let us assume that G is bounded. Then the mini-
mal sufficient representation for data described by a triple
(O,Q = {0}, acorr : (o, 0) 7→ o) contains d latent vari-
ables.

Proof. First, we show the existence of a (sufficient) rep-
resentation with d latent variables. We define the en-
coder mapping (and hence the representation) by E :

o 7→ argmin[H−1({o})] ∈ G, where the minimum takes
into account only the first vector entry.[81] We set the
decoder equal to the smooth map H. By noting that
D(E(o), 0) = o for all o ∈ O, this shows that d latent
variables are sufficient.

Let us now show that there cannot exist a representa-
tion with less than d variables. By definition of a nonde-
generate function H, there exists an open subset Nd ⊂ G
in Rd such that H|Nd : Nd → H(Nd) is a diffeomorphism.
We define the function f : o ∈ H(Nd) 7→ acorr(o, 0) ∈ I,
where I = H(Nd). Since f is the identity map and
hence a diffeomorphism, the data described by the triple
(O,Q = {0}, acorr : (o, 0) 7→ o) has dimension at least
d. By Proposition 2, we conclude that at least d latent
variables are required.

Appendix D: Neural networks

For a detailed introduction to artificial neural networks
and deep learning, see for example [44]. Here we give a
very short overview of the basics.
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a. Single artificial neuron. The building blocks of
neural networks are single neurons (Figure 4a). We can
think of a neuron as a map that takes several real in-
puts x1, . . . , xn and provides an output σ(

∑
i wixi + b),

according to an activation function σ : R → R, where
the weights wi ∈ R and the bias b ∈ R are tunable pa-
rameters. The output of the neuron is itself sometimes
denoted by activation, and there are different possible
choices for the activation function. For the implementa-
tion of the examples in this paper, we use the exponential
linear unit (ELU) [82], depicted in Figure 4b. The ELU
is defined for a parameter α > 0 as

σELU(z) =

{
z for z > 0 ,

α (ez − 1) for z ≤ 0 .

b. Neural network. A (feed-forward) neural network
is created by arranging neurons in layers and forwarding
the outcomes of the neurons in the i-th layer to neurons
in the (i + 1)-th layer (see Figure 4c). The network as
a whole can be viewed as a function F : Rn → Rm with
x1, . . . , xn corresponding to the activations of the neurons
in the first layer (which is called input layer). The acti-
vations of the input layer form the input for the second
layer, which is a hidden layer (since it is neither an input
nor an output layer). In the case of a fully connected
network, each neuron in the (i+ 1)-th layer receives the
activations of all neurons in the i-th layer as input. The
activations of the m neurons in the last layer, which is
called output layer, are then interpreted as the output of
the function F . It can be shown that neural networks
are universal, in the sense that any continuous function
can be approximated arbitrarily well by a feedforward
network with just one hidden layer by using sufficiently
many hidden neurons. For a mathematical statement of
the result, see [83, 84]. A visualization is given in [44].

c. Training. The weights and the biases of the neu-
ral network are not tuned by hand; instead, they are op-
timized using training samples, i.e., known input-output-
pairs (x, F ?(x)) of the function F ? that we would like to
approximate. We may think of a neural network as a
class of functions {Fθ}θ, parametrized by θ, which con-
tains the weights and biases of all the neurons in the
network. A cost function C (x, θ) measures how close
the output Fθ(x) of the network is to the desired output
F ?(x) for an input x. For example, a common choice for

the cost function is C (x, θ) = ‖F ?(x)− Fθ(x)‖22.

The weights and biases of a network are initialized
at random [44]. To then update the parameters θ, the

gradient ~∇θC (x, θ) is computed and averaged over all
training samples x. Subsequently, θ is updated in the
negative gradient direction — hence the name gradient
descent . In practice, the average of the gradient over all
training samples is often replaced by an average over a
smaller subset of training samples called a mini-batch;
then, the algorithm is called stochastic gradient descent.
The backpropagation algorithm is used to perform a gra-
dient descent step efficiently (see [44] for details).

1. Variational autoencoders

The implementation of SciNet uses a modified ver-
sion of so-called variational autoencoders (VAEs) [32, 35].
The standard VAE architecture does not include the
question input used by SciNet and tries to reconstruct
the input from the representation instead of answering a
question. VAEs are one particular architecture used in
the field of representation learning [30]. Here, we give a
short overview over the goals of representation learning
and the details of VAEs.

a. Representation learning. The goal in representa-
tion learning is to map a high-dimensional input vector x
to a lower-dimensional representation z = (z1, z2, . . . , zd),
commonly called the latent vector.[85] The representation
z should still contain all the relevant information about x.
In the case of an autoencoder, z is used to reconstruct the
input x. This is motivated by the idea that the better
the (low-dimensional) representation is, the better the
original data can be recovered from it. Specifically, an
autoencoder uses a neural network (encoder) to map the
input x to a small number of latent neurons z. Then,
another neural network (decoder) is used to reconstruct
an estimate of the input, that is z 7→ x̃. During training,
the encoder and decoder are optimized to maximize the
reconstruction accuracy and reach x̃ ≈ x.

b. Probabilistic encoder and decoder. Instead of con-
sidering deterministic maps x 7→ z and z 7→ x̃, we gen-
eralize to conditional probability distributions p(z|x) for
the encoder and p(x̃|z) for the decoder. This is moti-
vated by the Bayesian view that the most informative
statement the encoder can output a description of a prob-
ability distribution over all latent vectors, instead of out-
putting a single estimate. The same reasoning holds for
the decoder. We use the notation z ∼ p(z) to indicate
that z is picked at random according to the distribution
p.

We cannot treat the general case analytically, so we
make restricting assumptions to simplify the setting.
First we assume that the input can be perfectly com-
pressed and reconstructed by an encoder and decoder
which are both neural networks, that is we assume
that the ideal distributions p(z|x) and p(x̃|z) that reach
x = x̃ are members of parametric families {pφ(z|x)}φ
and {pθ(x̃|z)}θ, respectively. We further assume that
it is possible to achieve this with a latent representa-
tion where each neuron is independent of the others,
pφ(z|x) =

∏
i pφ(zi|x). If these distributions turn out

hard to find for a given dimension d of the latent repre-
sentation, we can try to increase the number of neurons of
the representation to disentangle them. Finally, we make
one more simplifying assumption, which is justified a pos-
teriori by good results: that we can reach a good approx-
imation of p(z|x) by using only independent normal dis-
tributions for each latent neuron, pφ(zi|x) = N (µi, σi),
where µi is the mean and σi the variance. We can think of
the encoder as mapping x to the vectors µ = (µ1, . . . , µd)
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Figure 5. Network structure for a variational autoencoder. The encoder and decoder are described by conditional probability
distributions p(z|x) and p(x|z) respectively. The output distribution of the encoder are the parameters µi and log(σi) for
independent Gaussian distributions zi ∼ N (µi, σi) of the latent variables. The reparameterization trick is used to sample from
the latent distribution.

and σ = (σ1, . . . , σd).

The optimal settings for φ and θ are then learned as
follows, see Figure 5:

1. The encoder with parameters (weights and bi-
ases) φ maps an input x to pφ(z|x) =
N [(µ1, . . . , µd), (σ1, . . . , σd)].

2. A latent vector z is sampled from pφ(z|x).

3. The decoder with parameters (weights and biases)
θ maps the latent vector z to pθ(x̃|z).

4. The parameters φ and θ are updated to maximize
the likelihood of the original input x under the de-
coder distribution pθ(x̃|z).

c. Reparameterization trick. The operation that
samples a latent vector z from pφ(z|x) is not differen-
tiable with respect to the parameters φ and θ of the net-
work. However, differentiability is necessary to train the
network using stochastic gradient descent. This issue is
solved by the reparameterization trick introduced in [35]:
if pφ(zi|x) is a Gaussian with mean µi and standard devi-
ation σi, we can replace the sampling operation using an
auxiliary random number εi ∼ N (0, 1). Then, a sample
of the latent variable zi ∼ N (µi, σi) can be generated by
zi = µi + σiεi. Sampling εi does not interfere with the
gradient descent because εi is independent of the train-
able parameters φ and θ. Alternatively, one can view
this way of sampling as injecting noise into the latent
layer [76].

d. β-VAE cost function. A computationally
tractable cost function for optimizing the parameters
φ and θ was derived in [35]. This cost function was
extended in [32] to encourage independency of the latent
variables z1, . . . , zd (or to encourage “disentangled” rep-
resentations, in the language of representation learning).
The cost function in [32] is known as the β-VAE cost

function,

Cβ(x) =−
[
Ez∼pφ(z|x) log pθ(x|z)

]
+ β DKL [pφ(z|x)‖h(z)] ,

where the distribution h(z) is a prior over the latent vari-
ables, typically chosen as the unit Gaussian[86], β ≥ 0
is a constant, and DKL is the Kullback-Leibler (KL) di-
vergence, which is a quasi-distance[87] measure between
probability distributions,

DKL [p(z)‖q(z)] =
∑
z

p(z) log

(
p(z)

q(z)

)
.

Let us give an intuition for the motivation behind the
β-VAE cost function. The first term is a log-likelihood
factor, which encourages the network to recover the in-
put data with high accuracy. It asks “for each z , how
likely are we to recover the original x after the decoding?”
and takes the expectation of the logarithm of this likeli-
hood pθ(x|z) (other figures of merit could be used here
in an alternative to the logarithm) over z sampled from
pφ(z|x), in order to simulate the encoding. In practice,
this expectation is often estimated with a single sample,
which works well enough if the mini-batches are chosen
sufficiently large [35].

The second term encourages disentangled representa-
tions, and we can motivate it using standard properties of
the KL divergence. Our goal is to minimize the amount
of correlations between the latent variables zi: we can
do this by minimizing the distance DKL [p(z)‖

∏
i p(zi)]

between p(z) and the product of its marginals. For any
other distribution with independent zi, h(z) =

∏
i h(zi),

the KL divergence satisfies

DKL

[
p(z)‖

∏
i

p(zi)

]
≤ DKL [p(z)‖h(z)] .

The KL divergence is furthermore jointly convex in its
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Box 1: Time evolution of a damped pendulum (Section E 1)

Problem:: Predict the position of a one-dimensional damped pendulum at different times.

Physical model:: Equation of motion: mẍ = −κx− bẋ .
Solution: x(t) = A0e

− b
2m

t cos(ωt+ δ0), with ω =
√

κ
m

√
1− b2

4mκ
.

Observation:: Time series of positions: o =
[
x(ti)

]
i∈{1,...,50} ∈ R50, with equally spaced ti ∈ [0, 5]s. Mass m = 1kg,

amplitude A0 = 1m and phase δ0 = 0 are fixed; spring constant κ ∈ [5, 10] kg/s2 and damping factor b ∈
[0.5, 1] kg/s are varied between training samples.

Question:: Prediction times: q = tpred ∈ [0, 10]s.

Correct answer:: Position at time tpred: acorr = x(tpred) ∈ R .

Implementation:: Network depicted in Figure 1 with three latent neurons (see Table II and Table I for the details).

Key findings::

• SciNet predicts the positions x(tpred) with a root mean square error below 2% (with respect to the amplitude
A0 = 1m) (Figure 6a).

• SciNet stores κ and b in two of the latent neurons, and does not store any information in the third latent neuron
(Figure 6b).

arguments, which implies

DKL

[∑
x

p(x) pθ(z|x)‖h(z)

]
≤
∑
x

p(x) DKL [pθ(z|x)‖h(z)] .

Combining this with the previous inequality, we obtain

DKL

[
p(z) ‖

∏
i

p(zi)

]
≤ Ex∼p(x) DKL [p(z|x)‖h(z)] .

The term on the right hand side corresponds exactly to
the second term in the cost function, since in the train-
ing we try to minimize Ex∼p(x) Cβ(x). Choosing a large
parameter β also penalizes the size of latent representa-
tion z, motivating the network to learn an efficient rep-
resentation. For an empirical test of the effect of large
β see [32], and for another theoretical justification using
the information bottleneck approach see [76].

To derive an explicit form of Cβ for a simple case, we
again assume that pφ(z|x) = N (µ, σ). In addition, we
assume that the decoder output pθ(x̃|z) is a multivariate
Gaussian with mean x̂ and fixed covariance matrix σ̂ =
1√
2
1. With these assumptions, the β-VAE cost function

can be explicitly written as

Cβ(x) = ‖x̂− x‖22 −
β

2

(∑
i

log(σ2
i )− µ2

i − σ2
i

)
+ C .

(D1)

The constant terms C do not contribute to the gradients
used for training and can therefore be ignored.

Appendix E: Details about the physical examples

In the following, we give some more information about
the four examples of physical systems to which we applied
SciNet and which were mentioned in the main text.

1. Damped pendulum

We consider a simple example from classical physics,
the damped pendulum, described in Box 1. The time
evolution of the system is given by the differential equa-
tion −κx − bẋ = mẍ, where κ is the spring constant,
which determines the frequency of the oscillation, and
b is the damping factor. We keep the mass m constant
(it is a scaling factor that could be absorbed by defining
κ′= κ/m and b′= b/m), such that κ and b are the only
variable parameters. We consider the case of weak damp-
ing here, where the solution to the equation of motion is
given in Box 1.

We choose a network structure for SciNet with 3 la-
tent neurons. As an input, we provide a time series of
positions of the pendulum and we ask SciNet to predict
the position at a future time (see Box 1 for details). The
accuracy of the predictions given by SciNet after training
is illustrated in Figure 6a.

Without being given any physical concepts, SciNet
learns to extract the two relevant physical parameters
from (simulated) time series data for the x-coordinate of
the pendulum and to store them in the latent represen-
tation. As shown in Figure 6b, the first latent neuron
depends nearly linearly on b and is almost independent
of κ, and the second latent neuron depends only on κ,
again almost linearly. Hence, SciNet has recovered the
same time-independent parameters b and κ that are used
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Figure 6. Damped pendulum. SciNet is fed a time series of the trajectory of a damped pendulum. It learns to store
the two relevant physical parameters, frequency and damping, in the representation, and makes correct predictions about the
pendulum’s future position. (a) Trajectory prediction of SciNet. Here, the spring constant is κ = 5kg/s2 and the damping
factor is b = 0.5kg/s. SciNet’s prediction is in excellent agreement with the true time evolution. (b) Representation learned
by SciNet. The plots show the activations of the three latent neurons of SciNet as a function of the spring constant κ and
the damping factor b. The first two neurons store the damping factor and spring constant, respectively. The activation of the
third neuron is close to zero, suggesting that only two physical variables are required. On an abstract level, learning that one
activation can be set to a constant is encouraged by searching for uncorrelated latent variables, i.e., by minimizing the common
information of the latent neurons during training.

by physicists. The third latent neuron is nearly constant
and does not provide any additional information — in
other words, SciNet recognized that two parameters suf-
fice to encode this situation.

2. Conservation of angular momentum

One of the most important concepts in physics is that
of conservation laws, such as conservation of energy and
angular momentum. While their relation to symmetries
makes them interesting to physicists in their own right,
conservation laws are also of practical importance. If
two systems interact in a complex way, we can use con-
servation laws to predict the behaviour of one system
from the behaviour of the other, without studying the
details of their interaction. For certain types of ques-
tions, conserved quantities therefore act as a compressed
representation of joint properties of several systems.

We consider the scattering experiment shown in Fig-
ure 7 and described in Box 2, where two point-like parti-
cles collide. Given the initial angular momentum of the
two particles and the final trajectory of one of them, a
physicist can predict the trajectory of the other using
conservation of total angular momentum.

To see whether SciNet makes use of angular mo-
mentum conservation in the same way as a physicist
would do, we train it with (simulated) experimental
data as described in Box 2, and add Gaussian noise

to show that the encoding and decoding are robust.
Indeed, SciNet does exactly what a physicist would do
and stores the total angular momentum in the latent
representation (Figure 7b). This example shows that
SciNet can recover conservation laws, and suggests that
they emerge naturally from compressing data and asking
questions about joint properties of several systems.

3. Representation of qubits

Quantum state tomography is an active area of re-
search [36]. Ideally, we look for a faithful representation
of the state of a quantum system, such as the wave func-
tion: a representation that stores all information neces-
sary to predict the probabilities of the outcomes for arbi-
trary measurements on that system. However, to specify
a faithful representation of a quantum system it is not
necessary to perform all theoretically possible measure-
ments on the system. If a set of measurements is sufficient
to reconstruct the full quantum state, such a set is called
tomographically complete.

Here we show that, based only on (simulated) exper-
imental data and without being given any assumptions
about quantum theory, SciNet recovers a faithful rep-
resentation of the state of small quantum systems and
can make accurate predictions. In particular, this allows
us to infer the dimension of the system and distinguish
tomographically complete from incomplete measurement
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Box 2: Two-body collision with angular momentum conservation (Section E 2)

Problem:: Predict the position of a particle fixed on a rod of radius r (rotating about the origin) after a collision at
the point (0, r) with a free particle (in two dimensions, see Figure 7a).

Physical model:: Given the total angular momentum before the collision and the velocity of the free particle after
the collision, the position of the rotating particle at time t′pred (after the collision) can be calculated from angular

momentum conservation: J = mrotr
2ω − rmfree(vfree)x = mrotr

2ω′− rmfree(v
′
free)x = J ′.

Observation::
Time series of both particles before the collision: o = [

(
troti ,qrot(t

rot
i )
)
,
(
tfreei ,qfree(t

free
i )

)
]i∈{1,...,5}, with times troti

and tfreei randomly chosen for each training sample. Masses mrot = mfree = 1kg and the orbital radius r = 1m
are fixed; initial angular velocity ω, initial velocity vfree, the first component of qfree(0) and final velocity v′free
are varied between training samples. Gaussian noise (µ = 0, σ = 0.01m) is added to all position inputs.

Question:: Prediction time and position of free particle after collision: q =
(
t′pred, [t

′
i,q
′
free(t

′
i)]i∈{1,...,5}

)
.

Correct answer:: Position of rotating particle at time t′pred: acorr = q′rot(t
′
pred) .

Implementation:: Network depicted in Figure 1 with one latent neuron (see Table II and Table I for the details).

Key findings::

• SciNet predicts the position of the rotating particle with root mean square prediction error below 4% (with respect
to the radius r = 1m).

• SciNet is resistant to noise.

• SciNet stores the total angular momentum in the latent neuron.

sets. Box 3 summarizes the setting and the results.

A (pure) state on n qubits can be represented by a
normalized complex vector ψ ∈ C2n , where two states
ψ and ψ′ are identified if and only if they differ by a
global phase factor, i.e., if there exists φ ∈ R such that
ψ = eiφψ′. The normalization condition and irrelevance
of the global phase factor decrease the number of free
parameters of a quantum state by two. Since a complex
number has two real parameters, a single-qubit state is
described by 2×21−2 = 2 real parameters, and a state of
two qubits is described by 2×22−2 = 6 real parameters.

Here, we consider binary projective measurements on n
qubits. Like states, these measurements can be described
by vectors ω ∈ C2n , with measurement outcomes labeled
by 0 for the projection on ω and 1 otherwise. The proba-
bility to get outcome 0 when measuring ω on a quantum
system in state ψ is then given by p(ω, ψ) = | 〈ω, ψ〉 |2,
where 〈·, ·〉 denotes the standard scalar product on C2n .

To generate the training data for SciNet , we assume
that we have one or two qubits in a lab that can be
prepared in arbitrary states and we have the ability to
perform binary projective measurements in a setM. We
choose n1 measurementsM1 := {α1, . . . , αn1

} ⊂ M ran-
domly, which we would like to use to determine the state
of the quantum system. We perform all measurements in
M1 several times on the same quantum state ψ to esti-
mate the probabilities p(αi, ψ) of measuring 0 for the i-th
measurement. These probabilities form the observation
given to SciNet .

To parameterize the measurement ω, whose out-
come probabilities should be predicted by SciNet , we
choose another random set of measurements M2 :=

{β1, . . . , βn2
} ⊂ M. The probabilities p(βi, ω) are pro-

vided to SciNet as the question input. We always assume
that we have chosen enough measurements in M2 such
that they can distinguish all the possible measurements
ω ∈ M, i.e., we assume that M2 is tomographically
complete.[88] SciNet then has to predict the probabil-
ity p(ω, ψ) for measuring the outcome 0 on the state ψ
when performing the measurement ω.

We train SciNet with different pairs (ω, ψ) for one and
two qubits, keeping the measurement sets M1 and M2

fixed. We choose n1 = n2 = 10 for the single-qubit case
and n1 = n2 = 30 for the two-qubit case. The results are
shown in Figure 8.

Varying the number of latent neurons, we can observe
how the quality of the predictions improves as we al-
low for more parameters in the representation of ψ. To
minimize statistical fluctuations due to the randomized
initialization of the network, each network specification
is trained three times and the run with the lowest mean
square prediction error on the test data is used.

For the cases where M1 is tomographically complete,
the plots in Figure 8 show a drop in prediction error when
the number of latent neurons is increased up to two or six
for the cases of one and two qubits, respectively.[89] This
is in accordance with the number of parameters required
to describe a one- or a two-qubit state. Thus, SciNet al-
lows us to extract the dimension of the underlying quan-
tum system from tomographically complete measurement
data, without any prior information about quantum me-
chanics.

SciNet can also be used to determine whether the mea-
surement setM1 is tomographically complete or not. To
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Figure 7. Collision under conservation of angular momentum. In a classical mechanics scenario where the total angular
momentum is conserved, the neural network learns to store this quantity in the latent representation. (a) Physical setting.
A body of mass mrot is fixed on a rod of length r (and of negligible mass) and rotates around the origin with angular velocity
ω. A free particle with velocity vfree and mass mfree collides with the rotating body at position q = (0, r). After the collision,
the angular velocity of the rotating particle is ω′ and the free particle is deflected with velocity v′free. (b) Representation
learned by SciNet. Activation of the latent neuron as a function of the total angular momentum. SciNet learns to store the
total angular momentum, a conserved quantity of the system.

Box 3: Representation of pure one- and two-qubit states (Section E 3)

Problem:: Predict the measurement probabilities for any binary projective measurement ω ∈ C2n on a pure n-qubit
state ψ ∈ C2n for n = 1, 2.

Physical model:: The probability p(ω, ψ) to measure 0 on the state ψ ∈ C2n performing the measurement ω ∈ C2n

is given by p(ω, ψ) = | 〈ω, ψ〉 |2 .
Observation:: Operational parameterization of a state ψ: o = [p(αi, ψ)]i∈{1,...,n1} for a fixed set of random binary

projective measurements M1 := {α1, . . . , αn1} (n1 = 10 for one qubit, n1 = 30 for two qubits).

Question:: OperationalF parameterization of a measurement ω: q = [p(βi, ω)]i∈{1,...,n2} for a fixed set of random

binary projective measurements M2 := {β1, . . . , βn2} (n2 = 10 for one qubit, n2 = 30 for two qubits).

Correct answer:: acorr(ω, ψ) = p(ω, ψ) = | 〈ω, ψ〉 |2.

Implementation:: Network depicted in Figure 1 with varying numbers of latent neurons (see Table II and Table I for
the details).

Key findings::

• SciNet can be used to determine the minimal number of parameters necessary to describe the state ψ (see Figure 8)
without being provided with any prior knowledge about quantum physics.

• SciNet distinguishes tomographically complete and incomplete sets of measurements (see Figure 8).

generate tomographically incomplete data, we choose the
measurements in M1 randomly from a subset of all bi-
nary projective measurements. Specifically, the quan-
tum states corresponding to measurements in M1 are
restricted to random real linear superpositions of k or-
thogonal states, i.e., to a (real) k-dimensional subspace.
For a single qubit, we use a two-dimensional subspace; for
two quibts, we consider both two- and three-dimensional
subspaces.

Given tomographically incomplete data about a state
ψ, it is not possible for SciNet to predict the outcome of
the final measurement perfectly regardless of the num-
ber of latent neurons, in contrast to the tomographically
complete case (see Figure 8). Hence, we can deduce from

SciNet’s output that M1 is an incomplete set of mea-
surements. Furthermore, this analysis provides a qual-
itative measure for the amount of information provided
by the tomographically incomplete measurements: in the
two-qubit case, increasing the subspace dimension from
two to three leads to higher prediction accuracy and the
required number of latent neurons increases.

4. Heliocentric model of the solar system

All the details about this example were already given
in the main text and are summarized in Box 4.
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Figure 8. Quantum tomography (more detailed plots than in the main text). SciNet is given tomographic data for
one or two qubits and an operational description of a measurement as a question input and has to predict the probabilities of
outcomes for this measurement. We train SciNet with both tomographically complete and incomplete sets of measurements,
and find that, given tomographically complete data, SciNet can be used to find the minimal number of parameters needed to
describe a quantum state (two parameters for one qubit and six parameters for two qubits). Tomographically incomplete data
can be recognized, since SciNet cannot achieve perfect prediction accuracy in this case, and the prediction accuracy can serve
as an estimate for the amount of information provided by the tomographically incomplete set. The plots show the root mean
square error of SciNet’s measurement predictions for test data as a function of the number of latent neurons.

Box 4: Heliocentric model of the solar system (Section E 4)

Problem:: Predict the angles θM (t) and θS(t) of Mars and the Sun as seen from Earth, given initial states θM (t0) and
θS(t0).

Physical model:: Earth and Mars orbit the Sun with constant angular velocity on (approximately) circular orbits.

Observation:: Initial angles of Mars and the Sun as seen from Earth: o = (θM (t0), θS(t0)), randomly chosen from a
set of weekly (simulated) observations within Copernicus’ lifetime (3665 observations in total).

Question:: Implicit.

Correct answer:: Time series
[
a(t1), . . . , a(tn)

]
=
[
(θM (t1), θS(t1)), . . . , (θM (tn), θS(tn))

]
of n = 20 (later in training:

n = 50) observations, with time steps ti+1 − ti of one week.

Implementation:: Network depicted in Figure 3a with two latent neurons and allowing for time updates of the form
r(ti+1) = r(ti) + b (see Table II and Table I for the details).

Key findings::

• SciNet predicts the angles of Mars and the Sun with a root mean square error below 0.4% (with respect to 2π).

• SciNet stores the angles φE and φM of the Earth and Mars as seen from the Sun in the two latent neurons (see
Figure 3c).

Appendix F: Representations of cyclic parameters

Here we explain the difficulty of a neural network to
learn representations of cyclic parameters, which was al-
luded to in the context of the qubit example (Section E 3,
see [90, 91] for a detailed discussion relevant to computer
vision). In general, this problem occurs if the data O
that we would like to represent forms a closed manifold
(i.e., a compact manifold without boundary), such as a
circle, a sphere or a Klein bottle. In that case, several
coordinate charts are required to describe this manifold.

As an example, let us consider data points lying on the
unit sphere O = {(x, y, z) : x2 + y2 + z2 = 1}, which we

would like to encode into a simple representation. The
data can be (globally) parameterized with spherical co-
ordinates φ ∈ [0, 2π) and θ ∈ [0, π] where (x, y, z) =
f(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ).[92] We would like
the encoder to perform the mapping f−1, where we de-
fine f−1((0, 0, 1)) = (0, 0) and f−1((0, 0,−1)) = (π, 0) for
convenience. This mapping is not continuous at points
on the sphere with φ = 0 for θ ∈ (0, π). Therefore, us-
ing a neural network as an encoder leads to problems, as
neural networks, as introduced here, can only implement
continuous functions. In practice, the network is forced
to approximate the discontinuity in the encoder by a very
steep continuous function, which leads to a high error for
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points close to the discontinuity.

In the qubit example, the same problem appears.
To parameterize a qubit state ψ with two param-
eters, the Bloch sphere with parameters θ ∈ [0, π]
and φ ∈ [0, 2π) is used: the state ψ can be writ-
ten as ψ(θ, φ) = (cos(θ/2), eiφ sin(θ/2)) (see for
example [93] for more details). Ideally, the en-
coder would perform the map E : o(ψ(θ, φ)) :=(
| 〈α1, ψ(θ, φ)〉 |2, . . . , | 〈αN1

, ψ(θ, φ)〉 |2
)
7→ (θ, φ) for

some fixed binary projective measurements αi ∈ C2.
However, such an encoder is not continuous. Indeed,
assuming that the encoder is continuous, leads to the
following contradiction:

(θ, 0) = E(o(ψ(θ, φ = 0)))

= E(o( lim
φ→2π

ψ(θ, φ)))

= lim
φ→2π

E(o(ψ(θ, φ)))

= lim
φ→2π

(θ, φ) = (θ, 2π) ,

where we have used the periodicity of φ in the second
equality and the fact that the Bloch sphere representation
and the scalar product (and hence o(ψ(θ, φ))) as well as
the encoder (by assumption) are continuous in φ in the
third equality.
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mographically complete.
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